
Application Note

VB6 Software for communicating with IBC
Tcp/ip readers

August 23, 2005 Application Note 019 1Page

This document will provide a brief and simplistic introduction into using tcp/ip to communicate with IBC readers
using VB6 code. Prior to reading this document and attempting to write code, it is suggested that you first read the
IBC Tcp/ip Manual, and also Application Note 020, which explains how to reprogram IBC tcp/ip readers from their
default ip address and port assignments.

The easy way to communicate with IBC tcp/ip readers using VB is to make use of the Winsock control. This
control contains all of the necessary properties to control the connection.

To start with, create a form and add 2 Winsock controls. Name the controls tcpclient and tcpserver. For the control
named tcpclient, set the remotehost property to the ip address of the reader, and set the remoteport property to the
data port which is programmed in the reader. For the socket named tcpserver, set the remotehost and remoteport
properties to 0. For both controls, the localport property can be set to 0. Also on your form, create four command
buttons, with the captions connect, listen, disconnect, and send. Also add 2 textboxes, named text1 and text2. The
controls will have the following functionality:

connect opens a connection to a reader which is a server
listen opens a connection to a reader which is a client
disconnect closes either of the above connections
send sends data to the reader
textbox shows data returned from the reader. Call this control text1
textbox data to be sent to the reader. Call this control text2

Reader as a server

Let’s look at connecting to a reader operating as a server first. To do this, you must use the connect method of the
winsock control. In this example, the winsock control is named tcpclient. We have chosen to use a boolean value
(tcpconnect) and set it to true when the connection occurs. If no connection occurs after a short period, we time
out. We use the windows sleep api to test the socket state every 100ms. This functionality could also be performed
by using a timer. The subroutine tcpclient_connect is the Connect Event for the winsock control, which will execute
when the connection has been established.

The code to establish the connection is:

dim tcpconnect as boolean

Private Sub tcpclient_Connect() ‘ winsock connect event
tcpconnect = True ‘ tell us that the connection is made
End Sub

sub open_tcp_server()
tcpconnect = false
on error goto bad_connect
tcpclient.connect ‘ invoke the connect method



Application Note

VB6 Software for communicating with IBC
Tcp/ip readers

August 23, 2005 Application Note 019 2Page

j = 0

test_socket::
Call Sleep(100)
j = j + 1
If j > 10 Then GoTo bad_connect
If tcpconnect = False Then GoTo test_socket
text1=”connected”
exit sub

bad_connect:
text1=”no connect”
end sub

Set your command button connect to execute the sub open_tcp_server. When you click, the connect method is
invoked, and the subroutine waits until a connection has been established (tcpconnect=true), or 1000ms has
passed. The status is shown in the textbox text1.

To close the connection, invoke the close method as follows. Your button captioned disconnect should call this
routine.

sub close_tcp_connections()
on error resume next
tcpclient.close
tcpconnect=false
tcpserver.close ‘ explained later in this document
exit sub

If you want, you can add another command button for testing the status of the connection. Caption this command
button with status. You can now check the status of the connection at any time by clicking on this button. The
executed code should be as follows:

sub check_status()
text1 = tcpclient.state
end sub

You can get the listing of state values by looking at the winsock documentation in VB. The most common states
are:

open 1 closed 0
listening 2 connecting 6
connected 7 closing 8



Application Note

VB6 Software for communicating with IBC
Tcp/ip readers

August 23, 2005 Application Note 019 3Page

Reader as a client

When the reader is set up as a client, it is the reader that initiates the connection, not the pc. To allow the pc to
receive and respond to the connection request, you must invoke the listen method of the winsock control. Once
the listen method is invoked, the winsock control simply waits until a connection request is received from a
remote client (in this case, the reader), and lets you know when a connection request has been received by
executing the connectionrequest event. You then must call the accept method to actually accept the connection.
Please note that the accept method should be called on a new instance of the winsock control, so that you can
accept and control multiple connection requests from the same socket, but for the purposes of this document
we will use the same winsock control to accept the request.

Remember that when we tested talking to a reader which was a server, we used the winsock control on our
form that was named tcpclient. We will use the other winsock control on the form, named tcpserver, to act as
the socket for accepting incoming connections. Because we are accepting connections, we must also assign a
port number to use for the incoming connection. This is because when the reader (acting as a client) wants to
connect to us, it must specify a port number to connect to. We must prepare the pc for this connection by
telling the socket what port number we expect the connection request to come in on. The default port set up in
the reader is 57, so if you have not changed this, you will need to set the localport property of the socket to 57.
You can do this in the code. An example follows:

sub setup_listen_socket()
tcpserver.localport=57 ‘ set our port to 57
tcpserver.remoteport=0
tcpserver.listen
end sub

sub tcpserver_connectionrequest(requestid as long) ‘ winsock conectionrequest event
tcpserver.accept requestid
text1=”accepted connection from “+tcpserver.remotehostip
end sub

Set up the command button which we captioned listen to execute the setup_listen_socket routine. The socket
will listen, and when a connection request has been made and accepted, we will put the reader’s ip address in
the text1 textbox. The connection is now active, and you can communicate with the reader. To close the
connection, click on the disconnect button described earlier. This will close both the tcpclient socket and
tcpserver socket.



Application Note

VB6 Software for communicating with IBC
Tcp/ip readers

August 23, 2005 Application Note 019 4Page

Communicating with the reader

The methods of communicating with a reader are the same, whether the reader is a server or a client. To send
data to a reader you use the senddata method of the socket. To receive data, you use the getdata method.
There is also a dataarrival event, which occurs whenever new data has arrived. For our example, we will use
the dataarrival event to trigger the getdata method, simply because it can run without intervention. The code to
do this is shown below. We are asssuming in this example that we are set up as a client, and the reader is set
up as a server (so we are using the socket named tcpclient). It is also assumed that the connection has already
been established.

dim received_reader_data as string

sub startup_receive
received_reader_data=””
end sub

sub tcpclient_dataarrival(totalbytes as long) ‘ socket data arrival event, occurs when there is data
dim incomingdata as string
tcpclient.getdata incomingdata,vbstring
received_reader_data=received_reader_data+indomingdata
text1=received_reader_data
end sub

As you can see from the above example, when data arrives, the dataarrival event is triggered which then
“gets” the data and appends it to received_reader_data, which is then copied to text1 so that you can see the
received data on the form. Once you set this up, you will not have to do anything to actually read data coming
in from the reader.

To senddata to the reader, we use the senddata method, such as the following:

tcpclient.senddata “V”+chr$(13)

This sends the command V followed by a carriage return (hex 0d) which is the command sent to all IBC
readers to return their identification string. Since most IBC commands end with a carriage return (unless you
are in protocol mode), you can use the text2 textbox on the form for typing in the command to send to the
reader, and then on your command button which is captioned send, you could execute the following:



Application Note

VB6 Software for communicating with IBC
Tcp/ip readers

August 23, 2005 Application Note 019 5Page

sub send_data_to_reader() ‘ called from command button
text1=”” ‘ clear the receive box before we send the command
tcpclient.senddata trim(text2)+chr$(13)
end sub

Now, you can test communications with any reader, set up as a client or a server, by simply putting the reader
command into the text2 textbox, and clicking on the send button. The response will automatically now show up in
the other text box.

The preceeding examples are simplistic and are only meant as a guideline in getting started with the software
required to communicate with the readers. Once you are able to test and understand the code shown here, it
should be easy to develop either a client or server application for the pc which will talk with the readers.


